Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials.

نویسندگان

  • Manish Prasad
  • Patrick F Conforti
  • Barbara J Garrison
چکیده

The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Modeling of Laser Ablation: Applications to Nanotechnology

Computational modeling has a potential of making an important contribution to the advancement of laser-driven methods in nanotechnology. In this paper we discuss two computational schemes developed for simulation of laser coupling to organic materials and metals and present a multiscale model for laser ablation and cluster deposition of nanostructured materials. In the multiscale model the init...

متن کامل

Multiscale simulation of laser ablation of organic solids: evolution of the plume

A computational approach that combines the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation and the direct simulation Monte Carlo (DSMC) method for simulation of the multi-component ablation plume development on the timeand length-scales of real experimental configurations is presented. The combined multiscale model addresses different process...

متن کامل

Computational model for multiscale simulation of laser ablation

Multiscale computational approach that combines different methods to study laser ablation phenomenon is presented. The methods include the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation, a combined MD finite element method (FEM) approach for simulation of propagation of the laser-induced pressure waves out from the MD computational cell, and...

متن کامل

Mechanisms of small clusters production by short and ultra-short laser ablation

The mechanisms involved into the formation of clusters by pulsed laser ablation are studied both numerically and experimentally. To facilitate the model validation by comparison with experimental results, the time and length scales of the simulation are considerably increased. This increase is achieved by using a combination of molecular dynamics (MD) and the direct simulation Monte Carlo (DSMC...

متن کامل

Monte Carlo simulation study of the effects of nonequilibrium chemical reactions during pulsed laser desorption

Monte Carlo simulation is used to study the role of chemical reactions in the gas flow of particles laser desorbed from the target into a vacuum. The influence of recombination and dissociation processes on the properties of the gas flow is considered. It was found that chemical reactions have a significant effect on the composition of the desorption jet and on the angular and mean energy distr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 8  شماره 

صفحات  -

تاریخ انتشار 2007